Exercise 1.82

A $32.65-\mathrm{g}$ sample of a solid is placed in a flask. Toluene, in which the solid is insoluble, is added to the flask so that the total volume of solid and liquid together is 50.00 mL . The solid and toluene together weigh 58.58 g . The density of toluene at the temperature of the experiment is $0.864 \mathrm{~g} / \mathrm{mL}$. What is the density of the solid?

Solution

Find what mass of toluene is in the flask by subtracting 32.65 g from the total.

$$
\begin{aligned}
\text { Mass of Solid }+ \text { Mass of Toluene } & =\text { Total Mass } \\
\text { Mass of Toluene } & =\text { Total Mass }- \text { Mass of Solid } \\
& =58.58 \mathrm{~g}-32.65 \mathrm{~g} \\
& =25.93 \mathrm{~g}
\end{aligned}
$$

Then determine how much volume this mass of toluene takes up.

$$
\begin{aligned}
\text { Toluene Volume } & =\frac{\text { Toluene Mass }}{\text { Toluene Density }} \\
& =\frac{25.93 \mathrm{~g}}{0.864 \frac{\mathrm{~g}}{\mathrm{~mL}}} \\
& \approx 30.0 \mathrm{~mL}
\end{aligned}
$$

Find what volume of solid is in the flask by subtracting 30.0 mL from the total.

$$
\begin{aligned}
& \text { Volume of Solid }+ \text { Volume of Toluene }=\text { Total Volume } \\
& \qquad \text { Volume of Solid }=\text { Total Volume }- \text { Volume of Toluene } \\
& \\
& =50.00 \mathrm{~mL}-30.0 \mathrm{~mL} \\
& \\
&
\end{aligned}
$$

Therefore, the density of the solid is

$$
\text { Solid Density }=\frac{\text { Solid Mass }}{\text { Solid Volume }}=\frac{32.65 \mathrm{~g}}{20.0 \mathrm{~mL}} \approx 1.63 \frac{\mathrm{~g}}{\mathrm{~mL}}
$$

